Extra: integration with pybind11#
Warning
The functionality described in this section is experimental, and it may be subject to API changes in future versions.
Added in version 0.6.
#include <mp++/extra/pybind11.hpp>
The mp++/extra/pybind11.hpp
header provides facilities to seamlessly translate
mp++ multiprecision objects to/from Python in pybind11
modules. pybind11 is a C++11 library that, similarly to the older
Boost.Python library,
allows to use C++ functions and classes from Python.
The API for the pybind11 integration currently includes a single function in the mppp_pybind11
namespace:
-
void mppp_pybind11::init()#
Initialisation function for the pybind11 integration.
This function should be called in the definition of a pybind11 extension module, right after the
PYBIND11_MODULE()
invocation.
Note
Do not forget to invoke the mppp_pybind11::init()
function! Failure to do so will result
in unpredictable runtime errors.
Including the mp++/extra/pybind11.hpp
header and invoking the mppp_pybind11::init()
function will register
custom type casters
that will automatically translate to/from Python mp++ objects used as arguments and return values in
functions exposed from C++. The translation rules are the following:
real
andreal128
objects are translated to/from mpmath’s mpf objects,complex
andcomplex128
objects are translated to/from mpmath’s mpc objects.
If the mpmath library is not installed, the translations for real128
, real
,
complex128
and complex
will be disabled at runtime.
Let’s take a look at an example of a pybind11 module enabling automatic translation of mp++ objects:
#include <mp++/mp++.hpp>
#include <mp++/extra/pybind11.hpp>
#include <string>
#include <unordered_map>
#include <vector>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
// A couple of functions accepting and returning C++ containers.
template <typename T>
static inline std::vector<T> test_vector(const std::vector<T> &v)
{
return v;
}
template <typename T>
static inline std::unordered_map<std::string, T> test_unordered_map(const std::unordered_map<std::string, T> &um)
{
return um;
}
PYBIND11_MODULE(pybind11_test_01, m)
{
// Init the pybind11 integration for this module.
mppp_pybind11::init();
// Expose a few functions testing the automatic translation of mp++ objects.
// -------------------------------------------------------------------------
m.def("test_int1_conversion", [](const mppp::integer<1> &n) { return n; });
m.def("test_rat1_conversion", [](const mppp::rational<1> &q) { return q; });
m.def("test_real_conversion", [](const mppp::real &r) { return r; });
m.def("test_real_conversion", [](const mppp::real &r, ::mpfr_prec_t prec) { return mppp::real{r, prec}; });
m.def("test_real128_conversion", [](const mppp::real128 &r) { return r; });
m.def("test_overload", [](const mppp::integer<1> &n) { return n; });
m.def("test_overload", [](const mppp::rational<1> &q) { return q; });
m.def("test_overload", [](const mppp::real128 &r) { return r; });
m.def("test_overload", [](const mppp::real &r) { return r; });
m.def("test_vector_conversion", test_vector<mppp::integer<1>>);
m.def("test_vector_conversion", test_vector<mppp::rational<1>>);
m.def("test_vector_conversion", test_vector<mppp::real128>);
m.def("test_vector_conversion", test_vector<mppp::real>);
m.def("test_unordered_map_conversion", test_unordered_map<mppp::integer<1>>);
m.def("test_unordered_map_conversion", test_unordered_map<mppp::rational<1>>);
m.def("test_unordered_map_conversion", test_unordered_map<mppp::real128>);
m.def("test_unordered_map_conversion", test_unordered_map<mppp::real>);
m.def("test_zero_division_error", []() { return mppp::integer<1>{1} / 0; });
}
Note that we have exposed functions which just return a copy of their input parameter.
This will allow us to verify that the automatic translation between mp++ and Python objects
works as intended. Now, assuming that we have built the code above into a Python extension
called pybind11_test_01
(see the pybind11 documentation
for details), we can try to call the exposed functions from Python:
>>> import pybind11_test_01 as p
>>> from fractions import Fraction as F
>>> p.test_int1_conversion(42)
42
>>> p.test_int1_conversion(-1)
-1
>>> p.test_rat1_conversion(F(3, 4))
Fraction(3, 4)
>>> p.test_rat1_conversion(F(-1, 2))
Fraction(-1, 2)
Indeed, the Python objects passed as arguments to the exposed functions are correctly translated to mp++ objects before being passed to the C++ functions, and the mp++ return values are correctly translated back to the original Python objects.
Let’s try with some floating-point objects:
>>> from mpmath import mpf, mp
>>> p.test_real_conversion(mpf("1.1"))
mpf('1.1000000000000001')
The default precision in mpmath is 53 (double-precision), and indeed the conversion between mpf
on the Python side
and real
on the C++ side is done with 53 bits of precision. We can increase the precision to 200 bits and
verify that the value is correctly preserved and translated:
>>> mp.prec = 200
>>> p.test_real_conversion(mpf("1.1"))
mpf('1.1000000000000000000000000000000000000000000000000000000000002')
If the precision is set exactly to 113, mpf
objects can be converted to real128
(and, similarly, mpc
objects can be converted to complex128
):
>>> mp.prec = 113
>>> p.test_real128_conversion(mpf("1.1"))
mpf('1.10000000000000000000000000000000008')
>>> mp.prec = 114
>>> p.test_real128_conversion(mpf("1.1"))
Traceback (most recent call last):
...
TypeError: test_real128_conversion(): incompatible function arguments. The following argument types are supported:
1. (arg0: mppp::real128) -> mppp::real128
A real128
will be successfully converted to an mpf
iff the current mpmath working precision is exactly 113.
A real
will be successfully converted to an mpf
iff its precision is not greater than the current mpmath working precision:
>>> mp.prec = 53;
>>> p.test_real_conversion(mpf("1.1"), 100)
Traceback (most recent call last):
...
ValueError: Cannot convert the real 1.1000000000000000888178419700125 to an mpf: the precision of the real (100) is greater than the current mpf precision (53). Please increase the current mpf precision to at least 100 in order to avoid this error
>>> mp.prec = 100;
>>> p.test_real_conversion(mpf("1.1"), 100)
mpf('1.1000000000000000000000000000003')
Similarly, a complex128
will be successfully converted to an mpc
iff the current mpmath working precision is exactly 113, and a complex
will be successfully converted to an mpc
iff its precision is not greater than the current
mpmath working precision.
Overloaded functions are supported as well:
>>> p.test_overload(-2)
-2
>>> p.test_overload(F(6, 7))
Fraction(6, 7)
>>> p.test_overload(mpf("1.3"))
mpf('1.2999999999999999999999999999994')
Note that, due to the fact that mpf
arguments can be converted both to real128
and real
,
overloads with real128
arguments should be exposed before overloads with real
arguments
(otherwise, the real
overload will always be preferred). The same holds true for
complex128
and complex
.
There’s an important caveat to keep in mind when translating to/from real128
or complex128
.
The IEEE 754 quadruple precision
format, implemented by real128
and complex128
,
has a limited exponent range. The value \(2^{-30000}\), for instance, becomes
simply zero in quadruple precision, and \(2^{30000}\) becomes \(+\infty\):
>>> mp.prec = 113
>>> p.test_real128_conversion(mpf(2)**-30000)
mpf('0.0')
>>> p.test_real128_conversion(mpf(2)**30000)
mpf('+inf')
In mpmath, however, \(2^{-30000}\) and \(2^{30000}\) are correctly computed to quadruple precision:
>>> mpf(2)**-30000
mpf('1.25930254358409145729153078521520406e-9031')
>>> mpf(2)**30000
mpf('7.94090351913296032413251784349270251e+9030')
This happens because mpmath features a much larger (practically unlimited) range for the value of the exponent.
As a consequence, a conversion from mpf
to real128
will not preserve the exact value if the absolute value of the
exponent is too large.
We can verify that the conversion between mp++ and Python works transparently when containers are involved:
>>> p.test_vector_conversion([1, 2, 3])
[1, 2, 3]
>>> p.test_vector_conversion([F(1), F(1, 2), F(1, 3)])
[Fraction(1, 1), Fraction(1, 2), Fraction(1, 3)]
>>> p.test_vector_conversion([mpf(1), mpf(2), mpf(3)])
[mpf('1.0'), mpf('2.0'), mpf('3.0')]
>>> p.test_unordered_map_conversion({'a': 1, 'b': 3})
{'a': 1, 'b': 3}
>>> p.test_unordered_map_conversion({'a': F(1, 2), 'b': F(1, 3)})
{'a': Fraction(1, 2), 'b': Fraction(1, 3)}
>>> p.test_unordered_map_conversion({'a': mpf(1), 'b': mpf(3)})
{'a': mpf('1.0'), 'b': mpf('3.0')}
Finally, the pybind11 integration utilities will automatically translate mp++ exceptions thrown
from C++ code into corresponding Python exceptions. Here is an example where mp++’s zero_division_error
exception is translated to Python’s ZeroDivisionError
exception:
>>> p.test_zero_division_error()
Traceback (most recent call last):
...
ZeroDivisionError: Integer division by zero