Skip to main content
Back to top
Ctrl
+
K
Main
Installation
Changelog
Breaking changes
Benchmarks
Acknowledgement
Tutorials
The basics
Taylor’s method
Introduction to the expression system
The adaptive integrator
Customising the adaptive integrator
ODEs with parameters
Non-autonomous systems
Dense & continuous output
Event detection
Variational ODEs
More on the expression system
Common pitfalls
Computing derivatives
Supporting large computational graphs
Parallelisation and vectorisation
Batch mode
Ensemble propagations
Parallel mode
Evaluating the performance of ensemble & batch mode
Extended and reduced precision
Computations in extended precision
Computations in arbitrary precision
Computations in single precision
Lagrangian and Hamiltonian mechanics
Interoperability with SymPy
Compiled functions
EOP and space weather data
Working with EOP data
Working with space weather data
A differentiable SGP4 propagator
Analytical theories and models
Introduction to the VSOP2013 planetary theory
Introduction to the ELP2000 lunar theory
Introduction to the IAU2000/2006 precession-nutation theory
Introduction to the EGM2008 model
Pickle support
JIT compilation and caching
Examples
Celestial mechanics and astrodynamics
The three-body problem
The restricted three-body problem
Continuation of Periodic Orbits in the CR3BP
Pseudo arc-length continuation in the CR3BP
N-body and Solar System dynamics
Brouwer’s law in the outer Solar System
Long term stability of N-body simulations: the case of Trappist-1
Conserving first integrals via manifold projection
Planetary embryos in the inner Solar System
Mercury’s relativistic precession
Calculating transit timing variations
Elastic tides
Astrodynamics
Box control in satellite Formation Flying
Comparing coordinate systems
Inverting Kepler’s equation in ODEs
Lagrange propagation and the state transition matrix
Gravity-gradient stabilization
Event detection
Sampling events
Poincaré sections
The second integral of motion
The Keplerian billiard
The two-fixed centres elliptic billiard
The wavy ramp
The Maxwell-Boltzmann distribution
Computing event sensitivity
Machine Learning
Feed-Forward Neural Networks
Interfacing
torch
to
heyoka.py
Neural ODEs - I
Neural ODEs - II
Neural Hamiltonian ODEs
ThermoNETs
Differentiable Atmosphere
Variational equations
Jet transport in the simple pendulum
Learning mass distributions in asteroids
Map inversion and event sensitivities
The Tolman–Oppenheimer–Volkoff equations (Lindblom’s form)
Others
The variational equations
Optimal Control of the Lotka-Volterra equations
Computing definite integrals
API reference
Common keyword arguments
Expression system
heyoka.expression
heyoka.dtens
heyoka.make_vars
heyoka.diff_tensors
heyoka.subs
heyoka.sum
heyoka.prod
heyoka.par
heyoka.time
heyoka.diff_args
Numerical integrators
heyoka.taylor_adaptive
heyoka.taylor_adaptive_batch
Variational ODE systems
heyoka.var_ode_sys
heyoka.var_args
Lagrangian and Hamiltonian mechanics
heyoka.lagrangian
heyoka.hamiltonian
Models
heyoka.model.fixed_centres
heyoka.model.pendulum
heyoka.model.cart2geo
heyoka.model.geo2cart
heyoka.model.rot_fk5j2000_icrs
heyoka.model.rot_icrs_fk5j2000
heyoka.model.rot_itrs_icrs
heyoka.model.rot_icrs_itrs
heyoka.model.delta_tdb_tt
heyoka.model.delta_tt_tai
heyoka.model.nrlmsise00_tn
heyoka.model.jb08_tn
heyoka.model.era
heyoka.model.erap
heyoka.model.pm_x
heyoka.model.pm_xp
heyoka.model.pm_y
heyoka.model.pm_yp
heyoka.model.dX
heyoka.model.dXp
heyoka.model.dY
heyoka.model.dYp
heyoka.model.Ap_avg
heyoka.model.f107
heyoka.model.f107a_center81
heyoka.model.iau2006
heyoka.model.egm2008_pot
heyoka.model.egm2008_acc
heyoka.model.sgp4_propagator_dbl
heyoka.model.sgp4_propagator_flt
heyoka.model.sgp4
heyoka.model.gpe_is_deep_space
heyoka.model.sgp4_propagator
EOP and space weather data
heyoka.eop_data
heyoka.sw_data
heyoka.eop_data_row
heyoka.sw_data_row
JIT compilation
heyoka.code_model
Repository
Open issue
.rst
.pdf
heyoka.taylor_adaptive
Contents
taylor_adaptive()
heyoka.taylor_adaptive
#
heyoka.
taylor_adaptive
(
sys
,
state
=
[]
,
**
kwargs
)
#
Contents
taylor_adaptive()